78 research outputs found

    Aprenentatge basat en projectes en l’àrea d’electrònica per a Enginyers Biomèdics

    Get PDF
    Projecte: 2014PID-UB/076Actualment els estudiants d’Enginyeria Biomèdica realitzen pràctiques típiques d’electrònica en els seus estudis, similars a les que es realitzen en altres ensenyaments. Segons l’opinió dels estudiants aquest tipus de pràctiques són molt poc motivadores doncs, no veuen l’aplicació directa als seus estudis. La proposta és aplicar la metodologia basada en projectes per a la realització de les pràctiques en el grau d’Enginyeria Biomèdica en les dues assignatures: Electrònica Aplicada i "Biomedical Instruments and Equipment". D’aquesta forma els alumnes hauran de realitzar un projecte d’electrònica aplicat a l’Enginyeria Biomèdica. Els alumnes a més d’estar més motivats adquiriran competències en la realització d’un projecte, és a dir, mitjançant l’aprenentatge basat en projectes els estudiants podran adquirir competències professionals que són difícils de treballar amb metodologies convencionals. Algunes d’aquestes competències són les propostes per la UB com a competències transversals i els seran molt útils en el seu Treball Fi de Grau i en el seu futur desenvolupament professional

    Portable Bio-Devices: Design of Electrochemical Instruments from Miniaturized to Implantable Devices

    Get PDF
    The integration of biosensors and electronic technologies allows the development of biomedical systems able to diagnose and monitoring pathologies by detecting specific biomarkers. The chapter presents the main modules involved in the development of such devices, generically represented in Fig. 1, and focuses its attention on the essential components of these systems to address questions such as: how is the device powered? How does it communicate the measured data? What kind of sensors could be used?, and What kinds of electronics are used

    Teragnosis in vivo: Innovación nanomédica fomentada por la convergencia de tecnologías emergentes

    Get PDF
    El creciente desarrollo y la mejora en cuanto a innovación de dispositivos basados en la convergencia de tecnologías emergentes ha dado lugar a un uso cada vez mayor de los nanosensores en la comunidad biomédica. Sin embargo, los nanosensores implantables aún tienen que afrontar ciertos retos como la biocompatibilidad y la seguridad de datos. En este artículo se abordan el progreso y los principales desafíos para esta clase de dispositivos nanomédicos y se analizan además las principales aplicaciones médicas con especial énfasis en la teragnosis, término que integra el concepto de diagnosis y terapia en un mismo dispositivo. De este modo, se traza el proceso desde la investigación aplicada hasta la comercialización del producto, que es cuando el retorno social puede ser estimado. Finalmente, se contempla la gestión de la tecnología dentro de un ecosistema de innovación, cuya cadena de valor incluye una integración multidisciplinaria y el flujo del conocimiento

    Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements

    Get PDF
    In this work, we present a self-powered electronic reader (e-reader) for point-of-care diagnostics based on the use of a fuel cell (FC) which works as a power source and as a sensor. The self-powered e-reader extracts the energy from the FC to supply the electronic components concomitantly, while performing the detection of the fuel concentration. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low power device without needing an external power source. Besides, the custom electronic instrumentation platform can process and display fuel concentration without requiring any type of laboratory equipment. In this study, we present the electronics system in detail and describe all modules that make up the system. Furthermore, we validate the device's operation with different emulated FCs and sensors presented in the literature. The e-reader can be adjusted to numerous current ranges up to 3 mA, with a 13 nA resolution and an uncertainty of 1.8%. Besides, it only consumes 900 µW in the low power mode of operation, and it can operate with a minimum voltage of 330 mV. This concept can be extended to a wide range of fields, from biomedical to environmental applications

    Design of a Customized multipurpose nano-enabled implantable system for in-vivo theranostics

    Get PDF
    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device

    Competitive USB-Powered Hand-Held Potentiostat for POC Applications: An HRP Detection Case

    Get PDF
    Considerable efforts are made to develop Point-of-Care (POC) diagnostic tests. POC devices have the potential to match or surpass conventional systems regarding time, accuracy, and cost, and they are significantly easier to operate by or close to the patient. This strongly depends on the availability of miniaturized measurement equipment able to provide a fast and sensitive response. This paper presents a low-cost, portable, miniaturized USB-powered potentiostat for electrochemical analysis, which has been designed, fabricated, characterized, and tested against three forms of high-cost commercial equipment. The portable platform has a final size of 10.5 × 5.8 × 2.5 cm, a weight of 41 g, and an approximate manufacturing cost of $85 USD. It includes three main components: the power module which generates a stable voltage and a negative supply, the front-end module that comprises a dual-supply potentiostat, and the back-end module, composed of a microcontroller unit and a LabVIEW-based graphic user interface, granting plug-and-play and easy-to-use operation on any computer. The performance of this prototype was evaluated by detecting chronoamperometrically horseradish peroxidase (HRP), the enzymatic label most widely used in electrochemical biosensors. As will be shown, the miniaturized platform detected HRP at concentrations ranging from 0.01 ng·mL−1 to 1 µg·mL−1, with results comparable to those obtained with the three commercial electrochemical system

    Combined dielectrophoresis and impedance systems for bacteria analysis in microfluidic on-chip platforms

    Get PDF
    Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments

    Biosensor Amperométrico. Potenciostato.

    Get PDF
    Los autores no tienen ningún inconveniente en que se deriven otros trabajos siempre que se nos pida permiso para ello.La práctica en cuestión se centra en los sensores amperométricos, y en particular, como medida a realizar se desarrolla el estudio de voltametrías cíclicas. Para el control de dicho análisis se introduce el diseño electrónico de un potenciostato, y de una particular arquitectura. Durante la realización de la práctica el alumno observará el proceso de oxidación - reducción de 5mM K3[Fe(CN)]6 (ferrocianuro) mediante la técnica de voltametría cíclica, al mismo tiempo que se familiarizará con el circuito electrónico que permite realizarla

    Biosensor Amperométrico. Potenciostato.

    No full text
    Los autores no tienen ningún inconveniente en que se deriven otros trabajos siempre que se nos pida permiso para ello.La práctica en cuestión se centra en los sensores amperométricos, y en particular, como medida a realizar se desarrolla el estudio de voltametrías cíclicas. Para el control de dicho análisis se introduce el diseño electrónico de un potenciostato, y de una particular arquitectura. Durante la realización de la práctica el alumno observará el proceso de oxidación - reducción de 5mM K3[Fe(CN)]6 (ferrocianuro) mediante la técnica de voltametría cíclica, al mismo tiempo que se familiarizará con el circuito electrónico que permite realizarla

    Biosensor Amperométrico. Potenciostato.

    No full text
    Los autores no tienen ningún inconveniente en que se deriven otros trabajos siempre que se nos pida permiso para ello.La práctica en cuestión se centra en los sensores amperométricos, y en particular, como medida a realizar se desarrolla el estudio de voltametrías cíclicas. Para el control de dicho análisis se introduce el diseño electrónico de un potenciostato, y de una particular arquitectura. Durante la realización de la práctica el alumno observará el proceso de oxidación - reducción de 5mM K3[Fe(CN)]6 (ferrocianuro) mediante la técnica de voltametría cíclica, al mismo tiempo que se familiarizará con el circuito electrónico que permite realizarla
    corecore